Measurement and Analysis of Atmospheric Stability in Two Texas Regions

Bradley K Fritz

Agricultural Engineer
USDA-ARS Areawide Pest Management Unit
College Station, Texas

Atmospheric Stability – Lapse Rate

- Lapse Rate
 - Rate at which temperature varies with height
- Adiabatic Lapse Rate
 - Rising parcel of air
 - Adiabatic Expansion
 - Temp decreases approx. 0.55 °F per 100 ft (1 °C per 100 m)
- Actual Lapse Rate
 - > Adiabatic lapse rate **Unstable**
 - ► Rising parcel's temperature > and density < than surrounding air
 - Vertical motion enhanced
 - = Adiabatic lapse rate Neutral
 - Rising parcel's temperature and density same as surrounding air
 - Equilibrium
 - < Adiabatic lapse rate **Stable**
 - Rising parcel's temperature < and density > than surrounding air
 - Vertical motion opposed

Stability Ratio

Stability Ratio (SR) is a function of actual lapse rate and wind speed

$$SR = \frac{T_1 - T_2}{u^2} \cdot 10^5$$

 $T_1 = \text{temp (°C) at } 10 \text{ m}$

 T_2 = temp (°C) at 2.5 m

u = wind speed (cm/sec) at 5 m

Stability Ratio Classes

Atmospheric Stability Condition	Stability Ratio Range
Unstable	-1.7 to -0.1
Neutral	-0.1 to 0.1
Stable	0.1 to 1.2
Very Stable	1.2 to 4.9

Atmospheric stability classes by stability ratio as defined by Yates, et al. (1974).

Effects of Atmospheric Stability

- ▶ Yates et al. (1966)
 - Over 3 times deposition under very stable versus unstable
- Yates et al. (1967)
 - Wind speed dominates in near field
- MacCollom et al. (1986)
 - Greater drift distance and amounts under temperature inversions
- ► Hoffman and Salyani (1996)
 - Higher depositions for nighttime versus daytime applications

Effects of Atmospheric Stability

- ▶ Bird (1995)
 - Highest drift under relatively high wind speeds coupled with temperature inversions and small droplet spectra
- ► Miller et al. (2000)
 - Atmospheric stability dominates in far field
 - Increased wind speed and stable conditions important factors in higher drift amounts
 - 2 6 times the amount of drift under unstable conditions versus stable conditions

Atmospheric Stability Research

Objectives

- Monitor and analyze meteorological conditions to develop a probability assessments of atmospheric stability and inversions as related to time of day, wind velocity, and other meteorological parameters at several crop production areas in Texas
- Field studies to assess spray drift and deposition under varying atmospheric stability conditions.
- Further field studies incorporating biological assessments of efficacy to determine impact of spray applications under different atmospheric stability conditions.
- Use of in-flight instrumentation to measure meteorological parameters and atmospheric stability

Monitoring and Documentation of Atmospheric Stability

- Construction of 2 meteorological monitoring towers
 - Temperature 0.5, 2.5, 5, 7.5, and10 meters
 - Wind Speed 2.5 and 10 meters
 - Wind Direction 2.5 meters
 - Solar Radiation 2.5 meters

Monitoring and Documentation of Atmospheric Stability

- Station 1
 - Erected near College Station, TX
- ► Station 2
 - Erected near Wharton, TX
- ▶ Data recorded in 1 minute intervals from May 2003 thru October 2003

Results of Data Analysis Wind Speed

Weather Station 1

	Yates et al. (1974) Atmospheric Stability Classes			
Wind Speed – mph (m/s)	Unstable	Neutral	Stable	Very Stable
Average	7.6 (3.4)	11.6 (5.2)	5.8 (2.6)	2.7 (1.2)
Standard Deviation	4.0 (1.8)	4.3 (1.9)	2.0 (0.9)	1.6 (0.7)

Weather Station 2

	Yates et al. (1974) Atmospheric Stability Classes			
Wind Speed – mph (m/s)	Unstable	Neutral	Stable	Very Stable
Average	7.8 (3.5)	11.6 (5.2)	6.5 (2.9)	3.1 (1.4)
Standard Deviation	4.3 (1.9)	4.7 (2.1)	2.0 (0.9)	1.6 (0.7)

Wind Speed

- "Rules of Thumb"
 - Wind speeds above 6 mph generally indicate neutral or unstable conditions.
 - Wind speeds below 3 mph generally indicate very stable conditions.
- For all recorded inversion periods
 - Station 1
 - ▶ Wind speed average 4.9 mph (2.2 m/s)
 - ▶ Wind speed standard deviation 3.6 mph (1.6 m/s)
 - Station 2
 - ▶ Wind speed average 5.1 mph (2.3 m/s)
 - ▶ Wind speed standard deviation 3.4 mph (1.5 m/s)

Probability Distribution of Stability Classes by Time of Day Station 1

Probability Distribution of Stability Classes by Time of Day **Station 2**

Daily Cycle of Stability

- ▶ Daytime hours (7 a.m. to 5 p.m.)
 - Tend to be dominated by unstable conditions followed by neutral conditions.
 - There are occurrences of both stable and very stable conditions.
- Nighttime hours (7 p.m. to 6 a.m.)
 - Tend to be dominated by very stable conditions followed by stable and neutral conditions.
 - There were some occurrences of unstable conditions
- ► Transitional hours (7 a.m. and 6 7 p.m.)
 - Conditions changing.
 - ▶ Unstable daytime conditions to Stable nighttime conditions.
 - Stable nighttime conditions to Stable daytime conditions.

Inversions 6 a.m. to 6:30 p.m.

					<u> </u>	
	Meteorological Station 1 Total of 136 Days Monitored			Meteorological Station 2 Total of 155 Days Monitored		
		Percent of Total Days Monitored	7		Percent of Total Days Monitored	
Number of Days One or More Inversion Events Occurred	78	57%	Percent of Total Inversion Days	101	65%	Percent of Total Inversion Days
Number of Morning Inversion Events	20	15%	26%	34	22%	34%
Number of Mid- day Inversion Events	26	19%	33%	36	23%	36%
Number of Evening Inversion Events	61	45%	78%	77	50%	76%

Inversions – Duration and Strength

Station 1

		Start Time	Duration (min)	Strength [*] (ΔT °C)
Morning	Average	8:27 a.m.	35	0.17
	Standard Deviation	n/a	57	0.10
Mid-day	Average	2:39 p.m.	27	0.16
	Standard Deviation	n/a	27	0.17
Evening	Average	6:04 p.m.	376	0.30
	Standard Deviation	n/a	392	0.29

Station 2

		Start Time	Duration (min)	Strength [*] (ΔT °C)
Morning	Average	8:22 a.m.	17	0.09
	Standard Deviation	n/a	20	0.05
Mid-day	Average	1:24 p.m.	32	0.15
	Standard Deviation	n/a	52	0.14
Evening	Average	6:11 p.m.	236	0.24
	Standard Deviation	n/a	355	0.28

Conclusions

- > Station 1
 - 57% of the days had inversions between 6 a.m. and 6:30 p.m.
- > Station 2
 - 65% of the days had inversions between 6 a.m. and 6:30 p.m.
- For both stations 1 and 2 more than half of the inversions occurred after 4 p.m.
- Afternoon inversions of most concern
 - Much longer in duration
 - Greater in strength (temperature difference)
- Evening applications would have a greater probability of being significantly influenced by stable to very stable or inversion conditions

- Objective
 - To measure spray drift and deposition under stable to very stable atmospheric conditions versus unstable conditions.
- ► Two treatments
 - Fine Spray
 - Medium Spray
- Sampling
 - Mylar cards
 - Elevated monofilament
 - Tower with monofilament

Ground Deposition - Mylar

Suspended Concentration - Monofilament

Tower - Monofilament

- Both Reps during Unstable Conditions
- ► Rep 3
 - Horizontal WS
 - ▶ 0.1 mph
 - Vertical WS
 - ▶ 1.6 mph (upward)
- ► Rep 10
 - Horizontal WS
 - ▶ 4.1 mph
 - Vertical WS
 - ▶ 0.1 mph (downward)

Suspended Concentrations – Monofilament Treatment 2 – Reps 3 and 10

Future Research

- Additional field studies
 - Evening sampling to better capture stable/very stable/inversion conditions.
 - Mid-day sampling for Unstable conditions.
 - Biological assessment of spray efficacy under varying stability conditions.
- ► Integration of Aventech AIMMS 20 in-flight meteorological monitoring system.